Originally posted by Brain dead idiot
As I said, up your game and wear a plastic bag tightly over your face and nose. Why stop at 25000 PPM of CO2 (5000 PPM is considered toxic) when wearing a mask after five minutes! Please do the world a favor! After you bro!
https://www.nature.com/articles/s41598-022-15409-x
Bacterial and fungal isolation from face masks under the COVID-19 pandemic
- Ah-Mee Park,
- Sundar Khadka,
- Fumitaka Sato,
- Seiichi Omura,
- Mitsugu Fujita,
- Kazuki Hashiwaki &
- Ikuo Tsunoda
Scientific Reports volume 12, Article number: 11361 (2022) Cite this article
- 492k Accesses
- 15 Citations
- 10876 Altmetric
- Metricsdetails
The COVID-19 pandemic has led people to wear face masks daily in public. Although the effectiveness of face masks against viral transmission has been extensively studied, there have been few reports on potential hygiene issues due to bacteria and fungi attached to the face masks. We aimed to (1) quantify and identify the bacteria and fungi attaching to the masks, and (2) investigate whether the mask-attached microbes could be associated with the types and usage of the masks and individual lifestyles. We surveyed 109 volunteers on their mask usage and lifestyles, and cultured bacteria and fungi from either the face-side or outer-side of their masks. The bacterial colony numbers were greater on the face-side than the outer-side; the fungal colony numbers were fewer on the face-side than the outer-side. A longer mask usage significantly increased the fungal colony numbers but not the bacterial colony numbers. Although most identified microbes were non-pathogenic in humans; Staphylococcus epidermidis, Staphylococcus aureus, and Cladosporium, we found several pathogenic microbes; Bacillus cereus, Staphylococcus saprophyticus, Aspergillus, and Microsporum. We also found no associations of mask-attached microbes with the transportation methods or gargling. We propose that immunocompromised people should avoid repeated use of masks to prevent microbial infection.
Similar content being viewed by others
New insights into the standard method of assessing bacterial filtration efficiency of medical face masks
Article Open access15 March 2021Filtration efficiency of medical and community face masks using viral and bacterial bioaerosols
Article Open access02 May 2023Development of a novel self-sanitizing mask prototype to combat the spread of infectious disease and reduce unnecessary waste
Article Open access14 September 2021Introduction
The rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting coronavirus disease 2019 (COVID-19) pandemic have led to urgent efforts to prevent the viral transmission. The most traditional and reasonable method to prevent respiratory infections is to wear face masks; several research groups have demonstrated its effectiveness against the respiratory viral transmission before the COVID-19 pandemic1,2. During the COVID-19 pandemic, increasing lines of evidence have supported the effectiveness of wearing face masks against SARS-CoV-2 and the droplets3,4. However, the World Health Organization (WHO) claims that face masks are effective only when used with hand hygiene, the proper use, and disposal of masks5.
Three types of face masks are commercially available for daily lives in Japan: (1) non-woven, (2) polyurethane, and (3) gauze or cloth masks (Fig. 1a,b). Non-woven masks are commonly used worldwide to prevent droplet infections by most respiratory microbes, including SARS-CoV-2 (Fig. 1c). Polyurethane masks have been used to protect against hay fever, particularly in Asian countries. Since polyurethane masks are easy to breathe and washable, the masks have become popular and have been reused several times during the COVID-19 pandemic. Although gauze masks are less popular, the masks can be washed, reused, and effectively prevent infections. Thus, the Japanese government distributed gauze masks to all citizens because of the shortage of non-woven masks during the early stage of the COVID-19 pandemic.
Figure 1
Face mask types and the sizes of microbes. (a) Macroscopic and microscopic images of three different types of face masks that are commercially available. Non-woven masks have three layers: the pore size of the outer and inner layers are identical (50–150 µm); the pore size of the middle layer (considered as a filter) is smaller (5–30 µm). Microscopic images were taken by the Olympus Microscope CX33 with the CCD Camera DP22 (bar = 500 µm). (b) Pore size, thickness, layer, and intended use of three mask types. The pore size of face masks from manufacturers’ instruction was confirmed using the microscopic images shown in (a) (right panels). (c) The standard size of microbes and particles (left panel) and their comparisons with the pore size (5 µm) of the middle filter of non-woven masks (right schema).
Full size image
Although the effectiveness of face masks against viral transmission has been extensively studied3,4, the hygiene issues in mask usage remain unclear. The standard mask usage is disposable non-woven masks. In some cases, however, people may use non-woven masks repeatedly or use different types of masks in different situations depending on their socioeconomic cultures. For example, in Japan, the short supply of non-woven masks led to the repeated use of disposable non-woven masks and the use of other types of face masks, such as handmade masks and polyurethane masks6. Even after the shortage of mask supply has been resolved, some people have used disposable non-woven masks repeatedly or other types of face masks.
Leave a comment: